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Abstract
We calculate numerically and analytically the grandcanonical fluctuation of
the number of particles both, in the fermionic condensate and above it, for
ideal Fermi systems of constant density of states. We compare the canonical
fluctuations, obtained from the equivalent Bose condensate fluctuation, with the
grandcanonical fermionic calculation. The fluctuations of the condensate are
almost the same in the two ensembles with a small correction coming from the
total particle number fluctuation in the grandcanonical ensemble. On the other
hand, well below the condensation temperature, the number of particles above
the condensate and its fluctuation are insensitive to the choice of ensemble.

PACS numbers: 05.30.Ch, 05.40.−a, 05.90.+m

1. Introduction

Starting quite a long time ago, Auluck and Kothari [1], then May [2] and finally Viefers,
Ravndal and Haugset [3] independently discovered that the specific heat of nonrelativistic
ideal gases in two-dimensional (2D) boxes is unaffected by the exclusion statistics. This
interesting result eventually did not receive the attention it deserved until 1995, when Lee
[4–6] re-derived it by introducing an unified way of writing the thermodynamic properties
of ideal gases in terms of polylogarithmic functions [7]. This formulation also represented
an important extension of the Auluck and Kothari result and triggered further investigations
(see, e.g., [8–10]). A Bose and a Fermi gas that have the same heat capacity are identical
at the thermodynamic level, under canonical conditions. For this reason they are called
thermodynamically equivalent [5]. If we denote by CV (T , V,N) the heat capacity of a system
at temperature T, volume V and particle number N, then the heat capacities CV,1 and CV,2

of two thermodynamically equivalent systems are identical functions of T , V and N. Using
this property, all the thermodynamic systems may be divided into equivalence classes [10].
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One can show that all the systems of ideal particles of the same constant density of single-
particle states (DOS), obeying Bose, Fermi or even fractional exclusion statistics [11], belong
to the same equivalence class [10, 12].

The equivalence between the Bose and the Fermi gases was critically examined by Pathria
[9]. He showed that the Lee’s unified formulation of 2D ideal gases does not hold anymore
below the Bose–Einstein condensation temperature of the Bose gas. Apparently, the 2D
(or, more exactly, constant DOS) thermodynamic equivalence holds only above the Bose–
Einstein condensation temperature.

On the other hand, Crescimanno and Landsberg [13], and one of us [10] showed that
there is a one-to-one mapping between microscopic configurations of bosons, fermions or
particles obeying fractional exclusion statistics, in systems with the same, constant DOS,
which preserves the total excitation energy, i.e. the energy of a given configuration minus
the energy of the system in the lowest energy configuration. Based on this theorem, the
thermodynamic equivalence of systems with equally spaced spectra should hold in any detail
at any temperature. Thus Pathria’s conclusion must be wrong. But what was overlooked
there?

The method of mapping microscopic configurations between systems of different
exclusion statistics, introduced in [10] for systems with constant DOS, was then extended
for systems with any DOS [14]. Systems that map (or transform) into each other by this
method are thermodynamically equivalent by construction. However, if we take a Fermi
system, transform it into a Bose one, and then calculate independently the thermodynamic
properties of these two systems by maximizing the entropy in each of them at constant internal
energy, U, and particle number, N, then the thermodynamic equivalence that we started with is
generally lost [14]. One has to keep in mind that the maximization of the entropy at constant
U and N leads to the grandcanonical distribution on the energy levels. Thus, since the two
gases are canonically equivalent, the obvious conclusion is that one or both of these Fermi and
Bose grandcanonical distributions lead to results in disaccord with the canonical ensemble.
The question which of these grandcanonical distributions is closer to the canonical distribution
is very difficult to answer, since ab initio canonical calculations are hardly performable for
general large systems.

1.1. The Fermi condensate

The Fermi condensate was introduced in [14, 15] for a system having N0 lowest energy levels
occupied, the (N0 + 1)th level empty and higher levels with arbitrary occupation numbers.
Let us enumerate the single-particle energy levels, εi , as ε0 � ε1 � · · · . Then the probability,
wN0 , for such system to form a Fermi condensate reads as [15]:

wN0 = ZN0/Z, Z =
∑
N0

ZN0 ,

ZN0 = Zex exp

(
−β

N0−1∑
i=0

εi + βµN0

)
, Zex(N0, β, βµ) =

∞∏
i=N0+1

(1 + exp(−β(εi − µ))).

(1)

Here, Z is the partition function of the system and Zex(N0, β, βµ) is the partition function of
the levels N0 + 1, N0 + 2, . . . . The probability distribution (1) may have a maximum at some
N0 = Nmax. The statistical interpretation of such a maximum is that in a physical system in
contact with a particle reservoir, the lowest N0 (≈Nmax) energy levels are always occupied.
These N0 particles form the Fermi condensate. At any finite temperature, N0 is subject to
fluctuations.
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Configurations of fermions may be transformed as in [10, 14] into configurations of
bosons. By this transformation, the N0 degenerate fermions will be mapped onto the Bose–
Einstein condensate (BEC) of the corresponding Bose system, and this is the reason for the
name ‘Fermi condensate’. If the system is large enough, then the number of single-particle
states in the interval (ε, ε + δε) is approximated by σ(ε) · δε, where σ(ε) is the energy-
dependent DOS. For canonical Bose systems of constant σ , the probability distribution of
having N0 particles in the condensate, wc

N0
, has been studied in detail earlier (see [17] for a

review). Then, by construction, wc
N0

also represents the canonical probability of having N0

particles in the Fermi condensate. Moreover, at constant σ the maximum of the distribution
wN0 , Nmax, is close to the average canonical occupation of the ground state [16]. However, the
two numbers are not the same because the distribution wN0 is asymmetric.

The existence of the Fermi condensate restores also the Bose–Fermi equivalence
challenged in [9]. According to section 5 of [14], for constant σ the grandcanonical Bose and
Fermi distributions map onto each other. Therefore, the complete equivalence between the
canonical Bose and Fermi gases is recovered if we separate the condensate (correspondent to
BEC) from the Fermi gas and assume Fermi occupation numbers for the excited states [16].
For simplicity, we will refer to the fermions above the condensate as particles in the thermally
active layer.

Below the condensation temperature, the Bose canonical and the grandcanonical
ensembles are not equivalent because of the huge particle number fluctuations on the
ground state. On the other hand, in Fermi systems particle number fluctuation is always
microscopic, so as expected, the canonical and the grandcanonical ensembles are equivalent
at any temperature. Nevertheless, the Fermi gas may be transformed into a Bose gas which
below the condensation temperature possesses a condensate. Thus, one can ask whether the
grandcanonical description (1) of the Fermi condensate and the bosonic canonical description
are equivalent. Indeed, this is a new type of equivalence, first mentioned in [14], which seems
not to hold in general.

Here, we shall discuss only the systems with constant σ and compare the grandcanonical
and the canonical probability distributions, wN0 and wc

N0
. An important parameter of the system

is the product σkBT . For large σkBT we can do some analytical calculations, assuming that
wN0 has a Gaussian shape. As we shall see in section 2, this approximation is not good
enough to evaluate the mean-square fluctuation of N0. To correct this and to extend our
results to lower values of σkBT , in section 3, we calculate wN0 , w

c
N0

and the fluctuations
numerically. We confirm that when σkBT → ∞, the canonical mean-square fluctuation,
〈δ2N0〉c, tends to ζ(2)(σkBT )2, where ζ(x) is the Riemann zeta function. We also show
that in the same limiting case the difference between the grandcanonical and the canonical
fluctuations, 〈δ2N0〉 − 〈δ2N0〉c, tends to a constant value, 0.39. Thus, the mean-square
fluctuation of N0 is of the same order as the number of particles in the thermally active layer
or the number of particles in the excited states in the Bose gas. This asymptotic behaviour is
proved analytically at the end of section 3.

2. Analytical evaluation of the fluctuations

First, we analyse the distribution wN0 analytically in the limit σkBT � 1. Transforming
summations into integrals in the expression for log wN0 following from equation (1), we
obtain [15]

logZN0 =
[
−β

(
σ

ε2
0

2
− ε0

)
+ βµ(σε0 − 1)

]
+ σ

∫ ∞

ε0

dε log[1 + exp(−β(ε − µ))], (2)
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Figure 1. Probability distribution of wN0 as a function of N0. The maximum of the probability
distribution is located at Nmax, which is given by equation (µ−Nmax/σ)/kBT = log(σkBT ). For
this particular plot σkBT = 100.

where ε0 is the energy of the N0th single-particle level, while the integral represents
logZex(N0, β, βµ). The calculated probability distribution is shown in figure 1.

Since σε0 = N0 and ∂ logZN0

/
∂N0 = σ−1

(
∂ logZN0

/
∂ε0

)
, the value of ε0 corresponding

to the maximum of probability, εmax, is given by the equation

∂ logZN0

∂ε0

∣∣∣∣
εmax

= −σ {log[1 + exp(β(εmax − µ))] − (σkBT )−1} = 0, (3)

and for σkBT � 1 [16]

εmax = µ − kBT log(σkBT ). (4)

We observe here that β(µ − εmax) depends only on σkBT as long as µ > kBT log(σkBT ).
Therefore, as T decreases and µ becomes larger than kBT log(σkBT ), the probability
distribution (1) forms a maximum at N0 > 0. We say that at this temperature the condensate
starts to form and equation µ = kBT log(σkBT ) defines the condensation temperature
[15, 16].

At low temperatures, the maximum of wN0 becomes sharp and ε0 approaches µ. In this
temperature range we shall approximate wN0 around the maximum by a Gaussian distribution,

wN0 ≈ w(Nmax) exp

[
− (N0 − Nmax)

2

2�2

]
(5)

of width

�−2 = −∂2 logZN0

∂N2
0

∣∣∣∣
Nmax

= (σkBT )−1 − (1 + σkBT )−1 ≈ (σkBT )−2. (6)

In this case, one can approximate ZN0 by Z(a)
N0

given by the expression

Z(a)
N0

= exp

{
logZNmax +

1

2

∂2 logZN0

∂N2
0

(δN0)
2

}
= ZNmax exp

{
−1

2

(δN0)
2

(σkBT )2

}
. (7)
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Here, δN0 ≡ N0 − Nmax. To check the accuracy of the approximation, we calculate first the
total partition function as

Z(a) =
∫ ∞

−∞
d(δN0)Z(a)

N0
≈ ZNmax

√
2πσkBT , (8)

where

logZNmax = −β

(
σ

ε2
max

2
− εmax

)
+ βµ(σεmax − 1) + σ

∫ ∞

εmax

dε log[1 + exp(−β(ε − µ))]

= σkBT

2
[(βµ)2 − log2(σkBT )] − log(σkBT ) + σkBT Li2(−exp(β(µ − εmax))),

(9)

and Li2 is Euler’s dilogarithm function [7]. Using equation (4) and the expansion

Li2(−z)|z�1 ≈ log2|z|
2

(
1 +

π2

6

2

log2|z|

)
, (10)

we obtain

logZ(a) ≈ σkBT

2
(βµ)2 +

π2

6
σkBT + log

√
2π. (11)

The exact partition function,

logZ = σ

∫ ∞

0
dε log[1 + exp(−β(ε − µ))] = σkBT Li2[− exp(βµ)], (12)

using the approximation (10) can be put into the form

logZ = σkBT

2
(βµ)2 +

π2

6
σkBT . (13)

The expansions of logZ and logZ(a) are identical up to order σkBT/ log2(σkBT ). The term
log

√
2π ≈ 0.92 from equation (11) may be neglected at σkBT � 1, since this is smaller than

σkBT/ log2(σkBT ) � 1.
From the approximation (5) we obtain√

〈δ2N0〉 = σkBT . (14)

The corresponding canonical fluctuation, calculated by the saddle-point method applied to the
equivalent Bose system [17, 18], is√

〈δ2N0〉c =
√

ζ(2)σkBT . (15)

Obviously, the two analytical approximations, (14) and (15), do not coincide and the question
that remains to be answered is whether these distributions are indeed different, or simply the
Gaussian approximation (5) is not good enough.

3. Numerical evaluation of the fluctuations

In this section, we calculate the fluctuations numerically by introducing a recursion relation.
From equation (1), we obtain

wN0+1

wN0

= exp
[−β

(
εN0 − µ

)]
1 + exp

[−β
(
εN0+1 − µ

)] (16)

and the value of Nmax may be found by solving

exp
[−β

(
εNmax − µ

)]
1 + exp

[−β
(
εNmax+1 − µ

)] = 1. (17)
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If the density of states is constant and εi+1 − εi = σ−1 for any i, then equation (17) becomes

exp[−β(εmax − µ)]

1 + exp[−β(εmax + σ−1 − µ)]
= 1. (18)

Using equations (16) and (18), we may now calculate numerically Nmax, 〈N0〉 and 〈δ2N0〉. If
σkBT � 1, by writing exp[−β(εmax + σ−1 − µ)] ≈ exp[−β(εmax − µ)](1 − (σkBT )−1)

equation (18) may be simplified to exp[β(µ − εmax)] = σkBT , which is the same as
equation (4). Moreover, since around the maximum exp[β(µ − εmax)] � 1, in the relevant
energy interval we may transform equation (16) into

wN0+1

wN0

= [
exp

(
β(εN0 − µ

))
+ exp(−1/σkBT )

]−1 ≈ 1 − exp
(
β
(
εN0 − µ

))
+

1

σkBT
. (19)

Let us now analyse the equivalent Bose gas with constant density of states. The canonical
partition function for a system of Nex particles is [17]

Zb
Nex

=
Nex∏
k=1

(1 − qk)−1, q ≡ exp(−1/σkBT ). (20)

In a canonical system of N particles, the probability wb
Nex

to have exactly Nex particles in the
excited states is proportional to Zb

Nex
− Zb

Nex−1 [18], so we have

wb
Nex

= qNex

Z

Nex∏
k=1

(1 − qk)−1. (21)

Since Nex ≡ N −N0, the relative probability which corresponds to equation (16) for fermions
is

wb
Nex−1

wb
Nex

= 1 − qNex

q
= (1 − exp(Nex/σkBT )) e1/σkBT . (22)

The most probable Nex is then given by equating right-hand side of equation (22) to 1.
We want now to compare equations (16) and (22) in the limit σkBT � 1. For this we

take a Fermi and a Bose system with the same number of particles, N. In the Fermi system
we define the Fermi energy, εF = N/σ . We shall assume that both systems are below the
condensation temperature and the number of particles in the condensate is N0. Above the
condensate we have Nex particles. For a condensed gas εF − µ < σ−1, so we can express Nex

in equation (22) as Nex = σ(εF − ε0) = σ(µ − ε0). By doing so, equation (22) becomes

wb
N0+1

wb
N0

= (
1 − exp

(
β
(
εn0 − µ

)))
exp(1/σkBT ) ≈ 1 − exp

(
β
(
εn0 − µ

))
+

1

σkBT
, (23)

which is identical to equation (19). Therefore, the two probability distributions wN0 and wb
N0

approach each other in the limit of large systems, i.e. when σkBT � 1.
The numerical calculations, based on equations (16) and (22) are plotted in figure 2. We

already observe that for σkBT � 1, the fluctuation of the particle number in the condensate
is almost the same as for the canonical Bose and the grandcanonical Fermi systems. This
justifies the approach taken in [16], and for σkBT � 1, N0 may be calculated directly as the
average number of particles in the Bose condensate, rather than by equation (3).

Notable relative differences between the canonical and the grandcanonical results appear
only for σkBT about 1 or below. For these values of σkBT the fluctuations depend on
the exact location of µ, with respect to the single-particle levels. For example, let us say
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Figure 2. Numerical calculations of 〈δ2N〉1/2/[ζ 1/2(2)σkBT ] (a) and 〈δ2N〉1/2 (b). For low
values of σkBT , 〈δ2N〉 depends on the exact location of µ, with respect to the single-particle
levels. If εN and εN+1 are two consecutive energy levels (εN+1 − εN = σ−1), then the solid
curves in both (a) and (b) figures correspond to µ = εN + 0.1 · iσ−1 (i = 0, 1, . . . , 5) from top to
bottom. The dashed lines represent the canonical fluctuations and the straight lines (y = 1 in (a)
and y = ζ 1/2(2)x in (b)) correspond to the asymptotic values.

that µ ∈ (εN−1, εN), where εN−1 and εN are two consecutive energy levels. In the limit
β(µ − εN−1) → ∞ and for N0 = N , equation (16) becomes

wN

wN−1
≈ exp(β(µ − εN−1)). (24)

For β(µ − εN−1) → ∞, we can calculate 〈N0〉 and 〈δ2N0〉 by taking into account only the
levels εN−1 and εN . We obtain

〈N0〉 = exp[β(µ − εN−1)](N + 1) + N

exp[β(µ − εN−1)] + 1
= N + 1 − exp[−β(µ − εN−1)], (25)

〈δ2N0〉 = exp[β(µ − εN−1)] exp[−2β(µ − εN−1)] + (1 − exp[−β(µ − εN−1)])2

exp[β(µ − εN−1)] + 1

= 1 − exp[−β(µ − εN−1)]

exp[β(µ − εN−1)] + 1
≈ exp[−β(µ − εN−1)]. (26)

Therefore, for any µ ∈ (εN , εN+1),

lim
T →0

{〈δ2N0〉1/2/ζ 1/2(2)σkBT } = 0. (27)

The situation is different if, for example, µ = εN . Then, applying the same algorithm
as above, we get 〈N0〉 = N + 0.5 and 〈δ2N〉1/2 = 0.5. In figure 2, we plotted 〈δ2N〉1/2/

[ζ 1/2(2)σkBT ] (a) and 〈δ2N〉1/2 (b) for µ = εN +0.1 · iσ−1 (i = 0, 1, . . . , 5). The fluctuations
normalized to the asymptotic value, ζ 1/2(2)σkBT , are quite different for σkBT � 1, but the
absolute values of the fluctuations are very close for any σkBT for both types of systems and
any choice of µ.

From figure 2(b), we also note that although the difference
√

〈δ2N0〉 −
√

〈δ2N0〉c is very
small for any σkBT , it does not tend to zero as σkBT → ∞. Numerically, we obtain√

〈δ2N0〉 −
√

〈δ2N0〉c ≈ 0.39 for σkBT � 1. (28)

To explain this difference, let us note that the fluctuation of N0 in the grandcanonical ensemble,
δN0 ≡ N0 − 〈N0〉, may be viewed as the superposition of fluctuations coming from two
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sources: the canonical fluctuation of N0 around its average value, corresponding to the total
particle number N, denoted by δN c

0 (≡N0 − 〈N0〉N), and the fluctuation of 〈N0〉N due to the
grandcanonical fluctuation of N. Assuming small fluctuations, the variation of 〈N0〉N due to
the variation of N may be written as

δ〈N0〉N = ∂〈N0〉N
∂N

δN.

Collecting all these together, we write

δN0 = N0 − 〈N0〉 ≡ N0 − 〈N0〉N + 〈N0〉N − 〈N0〉 = δN c
0 +

∂〈N0〉
∂N

δN. (29)

Below the condensation, ∂〈N0〉/∂N = 1 (temperature stays constant). Moreover, well below
the condensation temperature, like in the Maxwell Demon’s ensemble [19], δN c

0 and δN are
independent, since the condensate may be viewed as a reservoir of particles. With these
clarifications, equation (29) leads to

〈δ2N0〉 = 〈δ2N0〉c + 〈δ2N〉. (30)

For high enough σkBT and βµ, we take 〈δ2N〉 = σkBT , which, if plugged into equation (30)
yields

〈δ2N0〉 ≈
√

ζ(2)(σkBT )2 + σkBT ≈
√

ζ(2)σkBT + [2
√

ζ(2)]−1. (31)

As we expect, ([2
√

ζ(2)]−1) ≈ 0.39.
Using the same method, we calculate the fluctuation of the number of particles in the

thermally active layer without doing any extra numerics. Again we denote by 〈Nex〉 the
average number of particles in the thermally active layer and the fluctuation δNex can again be
written as

δNex ≡ Nex − 〈Nex〉 = Nex − 〈Nex〉N + 〈Nex〉N − 〈Nex〉 = δcNex +
∂〈Nex〉

∂N
δN. (32)

By 〈Nex〉N we denote the average number of particles in the thermally active layer at
fixed N. Well below the condensation temperature 〈Nex〉N does not depend on N, so from
equation (32), we get δNex = δcNex and

〈δ2Nex〉 = 〈δ2Nex〉c = 〈δ2N0〉c. (33)

4. Conclusions

The thermodynamic equivalence between ideal bosons and fermions with the same constant
density of states σ [1–5, 8, 10, 13] is apparently lost below the Bose–Einstein condensation
temperature [9], Tc. On the other hand, it was proven that if the Bose and the Fermi
systems have the same spectrum consisting of nondegenerate, equidistant single-particle states
(like, for example, particles in a one-dimensional harmonic potential), then the canonical
thermodynamic equivalence between the two systems is preserved down to zero temperature
in the smallest details [10, 13]. This apparent contradiction is due to the fact that below Tc,
the condensate is formed in the Bose gas and to this it corresponds a degenerate subsystem
in the Fermi gas that was previously overlooked. The existence of the degenerate subsystem
changes slightly the values of intensive parameters, like the chemical potential, in such a way
that the equivalence is restored. Because of the correspondence between the Fermi degenerate
subsystem and the Bose–Einstein condensate, we called the first one Fermi condensate. The
particles above the Fermi condensate form the so-called thermally active layer.

One can emphasize the Fermi condensate by calculating in the grandcanonical ensemble
the probability to have N0 degenerate particles at the bottom of the single-particle spectrum
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(see equation (1)). Below Tc this probability distribution has a maximum for N0 > 0 and we
showed numerically and analytically in section 3 that the grandcanonical average of N0 is the
same as the canonical average.

We also calculated the fluctuation of the condensate and of the particles in the thermally
active layer. The grandcanonical fluctuation of N0 is almost the same as the canonical
fluctuation. Although the average values 〈N0〉 and 〈N0〉c are identical, for large values of
σkBT the fluctuations 〈δ2N0〉1/2 and (〈δ2N0〉c)1/2 differ by a small, but a constant value,
which is 0.39. This is due to the extra contribution to 〈δ2N0〉1/2, given by the grandcanonical
fluctuation of the total particle number.

The fermions in the thermally active layer correspond to the bosons on the excited
energy levels. Canonical and grandcanonical averages of Nex are the same. Moreover, well
below the condensation temperature, where Maxwell Demon’s ensemble is applicable [19],
the fluctuation of Nex is the same in both the canonical and the grandcanonical ensembles
(see (33)).
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